The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in Aspergillus fumigatus.
نویسندگان
چکیده
OBJECTIVES Recent increases in triazole resistance in Aspergillus fumigatus have been attributed primarily to target site (cyp51A) mutations. A recent survey of resistant isolates in Manchester showed that >50% of resistant isolates had no mutation in cyp51A or its promoter. We investigated the mechanisms of resistance in clinical azole-resistant isolates without cyp51A mutations. METHODS Twelve azole-resistant isolates, 10 of which were itraconazole resistant, were studied. Bioinformatic comparisons between Candida albicans efflux genes and A. fumigatus genome data identified 20 putative azole transporter genes. Basal and azole-induced expression of these genes and cyp51A was quantified using RT-PCR with comparison with clinical azole-susceptible isolates. Function of high basal or itraconazole-induced expression transporters was tested by gene knockout in azole-susceptible and azole-resistant isolates. RESULTS All susceptible strains showed minimal basal expression of cdr1B compared with 8 of 10 azole-resistant strains with high basal expression of this gene (>5-fold), 3 of which showed >30-fold increased expression. Knockout of this gene resulted in a 4-fold reduction in itraconazole, posaconazole and voriconazole MICs for a susceptible clinical isolate and a 4-fold reduction in itraconazole susceptibility in a clinical resistant isolate. One strain showed a >500-fold induction of cyp51A. No increase in basal expression or expression after induction was seen for the 18 remaining putative transporters. CONCLUSIONS The reasons behind the shift away from target site mutation in azole-resistant isolates from Manchester are unknown. The modest change in expression of cdr1B in azole-susceptible strains implies that only study of resistant isolates will lead to further understanding of resistance mechanisms in A. fumigatus.
منابع مشابه
A Novel Zn2-Cys6 Transcription Factor AtrR Plays a Key Role in an Azole Resistance Mechanism of Aspergillus fumigatus by Co-regulating cyp51A and cdr1B Expressions
Successful treatment of aspergillosis caused by Aspergillus fumigatus is threatened by an increasing incidence of drug resistance. This situation is further complicated by the finding that strains resistant to azoles, the major antifungal drugs for aspergillosis, have been widely disseminated across the globe. To elucidate mechanisms underlying azole resistance, we identified a novel transcript...
متن کاملEpidemiological and Genomic Landscape of Azole Resistance Mechanisms in Aspergillus Fungi
Invasive aspergillosis is a life-threatening mycosis caused by the pathogenic fungus Aspergillus. The predominant causal species is Aspergillus fumigatus, and azole drugs are the treatment of choice. Azole drugs approved for clinical use include itraconazole, voriconazole, posaconazole, and the recently added isavuconazole. However, epidemiological research has indicated that the prevalence of ...
متن کاملA point mutation in the 14alpha-sterol demethylase gene cyp51A contributes to itraconazole resistance in Aspergillus fumigatus.
The genes encoding 14alpha-sterol demethylases (cyp51A and cyp51B) were analyzed in 12 itraconazole (ITC)-resistant and three ITC-susceptible clinical isolates of Aspergillus fumigatus. Six ITC-resistant strains exhibited a substitution of another amino acid for glycine at position 54, which is located at a very conserved region of the Cyp51A protein. The cyp51A gene from the A. fumigatus wild-...
متن کاملMultiple resistance mechanisms among Aspergillus fumigatus mutants with high-level resistance to itraconazole.
A collection of Aspergillus fumigatus mutants highly resistant to itraconazole (RIT) at 100 micro g ml(-1) were selected in vitro (following UV irradiation as a preliminary step) to investigate mechanisms of drug resistance in this clinically important pathogen. Eight of the RIT mutants were found to have a mutation at Gly54 (G54E, -K, or -R) in the azole target gene CYP51A. Primers designed fo...
متن کاملAspergillus fumigatus harbouring the sole Y121F mutation shows decreased susceptibility to voriconazole but maintained susceptibility to itraconazole and posaconazole.
OBJECTIVES Voriconazole, itraconazole and posaconazole are members of the azole family and widely used for the treatment of aspergillosis. They act by inhibiting the activity of the fungal Cyp51A enzyme. The emergence of environmental azole-resistant Aspergillus fumigatus strains raises major concerns for human health. METHODS Recently, a new cyp51A-mediated resistance mechanism (namely TR46/...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of antimicrobial chemotherapy
دوره 68 7 شماره
صفحات -
تاریخ انتشار 2013